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Abstract—The first synthesis of a pair of (R)- and (S)-piperidazine-3-phosphonic acids was performed via a one-pot process of
hetero Diels–Alder reaction and Lewis acid-catalyzed phosphonylation. The absolute configuration of the target compounds was
established by a novel transformation into known (R)- and (S)-pyrrolidine-2-phosphonic acids. © 2001 Elsevier Science Ltd. All
rights reserved.

a-Aminophosphonic acids 1 and a-hydrazinophospho-
nic acids 2 (Fig. 1) are considered as analogues of
naturally occurring a-amino acids and have received
considerable attention over the past two decades in the
areas of medicinal and agricultural chemistry on
account of their potential biological activities.1,2 There-
fore, these compounds, especially a-aminophosphonic
acids and their derivatives, have been synthesized by
various methods.3,4 However, a simple and general
synthetic method for the cyclic amino-type of com-
pounds such as 3 and 4 is relatively unknown. Recently,
as the first example of cyclic a-hydrazinophosphonic
acid, we reported the synthesis of racemic piperidazine-
3-phosphonic acid 4 (n=2) employing the hetero Diels–
Alder (D–A) reaction and subsequent phosphonylation
of the D–A adduct in the presence of a Lewis acid.5

Herein, we report the successful application of this
methodology to an asymmetric synthesis of (R)- and
(S)-piperidazine-3-phosphonic acids and a novel trans-
formation of these piperidazine derivatives into the
corresponding pyrrolidine-2-phosphonic acids 3 (n=2).

In the initial stage of the synthesis, a two-step proce-
dure of the hetero D–A reaction and subsequent phos-
phonylation, previously adopted for the racemic
compounds,5 was improved to a one-pot reaction, as
illustrated in Scheme 1. Thus, di-(−)-menthyl
azodicarboxylate6 was reacted in CH2Cl2 at room tem-
perature with 1-trimethylsilyloxybutadiene (or 1-
methoxybutadiene) in the presence of trimethyl
phosphite and TMSOTf (trimethylsilyl triflate) as a
Lewis acid to afford an inseparable mixture of two
diastereoisomers 5 in 100% (or 78% from 1-methoxybu-
tadiene) yield.7 Catalytic hydrogenation of 5 using Pd
on charcoal in methanol at 4 atm of H2 gave a mixture
of the saturated derivatives 6a and 6b in a ratio of 66:34
and 99% yield, which could be easily separated by
column chromatography on silica gel using AcOEt and
hexane (1:1) to provide 6a (yield 65%, [a ]D27 −71.7°
(c=0.93, CHCl3)) and 6b (yield 34%, [a ]D24 −39.9° (c=
1.23, CHCl3)). The ratio of 6a:6b is a reflection of the
stereoselectivity in the phosphonylation to the acyli-
minium intermediate generated from the hetero D–A

Figure 1.
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Scheme 1.

adduct by TMSOTf. Finally, each of the diastereoiso-
mers 6a and 6b was hydrolyzed in boiling 6N HCl–
AcOH (1:1) and subsequently treated with propylene
oxide5 in methanol to give optically active piperidazine-
3-phosphonic acids (−)-7, mp 163–165°C, [a ]D25 −16.0°
(c=0.70, 2N HCl) and (+)-7, mp 161–163°C, [a ]D26

+13.7° (c=0.67, 2N HCl), in 64 and 67% yield, respec-
tively. The structures of (−)-7 and (+)-7 were separately
confirmed by comparison of spectral data with those of
racemic piperidazine-3-phosphonic acid,5 except with
regard to the optical rotation.

In order to determine the absolute configurations of the
target compounds (−)-7 and (+)-7, we attempted a
novel transformation of these piperidazine intermedi-

ates 6a and 6b by reducing one of the two nitrogen
atoms into chiral pyrrolidine-2-phosphonic acids having
known absolute stereochemistry. For this purpose, it
was needed to cleave the C6�N1 bond in the piperi-
dazine ring. One possible approach might be by an
effective RuO4 oxidation of the C6 methylene con-
structing a carbonyl function, followed by hydrolysis of
the resultant amide bond. Such synthetic outline is
shown in Scheme 2. RuO4 oxidation of the piperidazine
derivative 6a was carried out using a catalytic amount
of RuO2 under a two-phase system of 10% aqueous
NaIO4 and AcOEt,8 and the corresponding piperidazin-
6-one 8a was obtained in 57% yield as a single product.
Hydrolysis of 8a in boiling 6N HCl–AcOH (1:1)
afforded not the expected ring-opened product but,

Scheme 2.
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fortunately, the ring-contracted five-membered lactam
9a in 77% yield. Lactam 9a was smoothly hydrogenated
in 2N HCl using PtO2 at 4 atm of H2 through a one-pot
operation combined with hydrogenolysis of the N�N
bond and reduction of the lactam C=O function, and
then treated by ion-exchange chromatography (Dowex
50W) to furnish the desired pyrrolidine-2-phosphonic
acid (−)-10, mp 275–276°C (lit.9 mp 275–276°C) in 73%
yield. The specific rotation of (−)-10 ([a ]578

20 −64.2°
(c=1.03, 1N NaOH) was in accord with the reported
value for (S)-pyrrolidine-2-phosphonic acid ([a ]578

20 −60°
(c=1, 1N NaOH)).9

In a similar way, piperidazine derivative 6b, a precursor
of (+)-7, was transformed into the pyrrolidine-2-phos-
phonic acid (+)-10, mp 276–277°C (lit.9 mp 272–273°C),
[a ]578

22 +66.3° (c=1.0, 1N NaOH), the optical rotation of
which was in good agreement with that of the known
(R)-form, [a ]578

20 +64° (c=1, 1N NaOH).9

Thus, the chemical conversion was successfully accom-
plished. The absolute configuration of the levorotatory
piperidazine-3-phosphonic acid (−)-7 and its precursor
6a was assigned to be (S)-configuration, while that of
the dextrorotatory compound (+)-7 and its derivative
6b to be (R)-configuration.

In summary, the first synthesis of (R)- and (S)-piperi-
dazine-3-phosphonic acids and the related compounds10

provides ready access to a new type of optically active
cyclic a-hydrazinophosphonic acids. Furthermore, the
transformation of the piperidazine derivatives into the
pyrrolidine compounds, which was effectuated by RuO4

oxidation, provides a new synthetic route to useful
compounds having a pyrrolidine ring system.
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orless oil. MS m/z : 556 (M+). 1H NMR (CDCl3) d :
0.64–1.18 (24H, m), 1.18–1.57 (4H, m), 1.57–1.83 (4H,
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10. Data for new compounds are as follows:
Compound 6a: Colorless oil. [a ]D

27 −71.7° (c=0.93,
CHCl3). IR (film): 1732, 1712 cm−1. 1H NMR (CDCl3) d :
0.67–1.14 (24H, m), 1.20–1.58 (5H, m), 1.61–1.74 (4H,
m), 1.74–2.23 (7H, m), 2.94–3.17 (1H, br), 3.74–3.89 (6H,
m), 3.99–4.22 (1H, m), 4.45–4.84 (3H, m). HRMS m/z :
Calcd for C28H51N2O7P: 558.3434. Found: 558.3434.
Compound 6b: Colorless oil. [a ]D

24 −39.9° (c=1.23,
CHCl3). IR (film): 1732, 1705 cm−1. 1H NMR (CDCl3) d :
0.72–1.17 (24H, m), 1.22–1.60 (5H, m), 1.60–1.75 (4H,
m), 1.75–2.30 (7H, m), 2.81–3.08 (1H, m), 3.76–3.84 (6H,
m), 4.05–4.25 (1H, m), 4.48–4.90 (3H, m). HRMS m/z :
Calcd for C28H51N2O7P: 558.3434. Found 558.3430.
Compound (−)-7: White powder, mp 163–165°C. [a ]D

25

−16.0° (c=0.70, 2N HCl). IR (KBr): 3433, 3278, 1157,
1084 cm−1. 1H NMR (D2O) d : 1.56–1.85 (2H, m), 1.90–
2.05 (2H, m), 3.03–3.12 (1H, m), 3.16–3.26 (1H, m),
3.30–3.40 (1H, m). 13C NMR (100 Mz, D2O) d : 21.30 (t),
23.72 (t), 46.04 (t), 54.88 (ddP, 1JCP=146.5 Hz). HRMS
m/z : Calcd for C4H12N2O3P: 167.0586. Found: 167.0586.
Compound (+)-7: White powder, mp 161–163°C. [a ]D

26

+13.7° (c=0.67, 2N HCl). Other spectral data, identical
with those of (−)-7.
Compound 8a: Colorless oil. [a ]D

22 −38.0° (c=0.73,
CHCl3). IR (film): 1790, 1755, 1720 cm−1. 1H NMR
(CDCl3) d : 0.67–1.28 (24H, m), 1.28–1.62 (4H, br), 1.62–
1.76 (4H, br), 1.84–2.27 (6H, m), 2.44–2.62 (2H, m),
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3.75–3.88 (6H, m), 4.53–4.76 (2H, m), 4.84–5.00 (1H, br).
13C NMR (CDCl3) d : 150.90 (s), 155.56 (s), 169.70 (s).
HRMS m/z : Calcd for C28H50N2O8P: 573.3305. Found:
573.3310.
Compound 8b: Yield 60% from 6b. Colorless oil. [a ]D

22

−78.9° (c=1.18, CHCl3). IR (film): 1790, 1755, 1720
cm−1. 1H NMR (CDCl3) d : 0.68–1.22 (24H, m), 1.25–1.59
(4H, m), 1.61–1.78 (4H, m), 1.83–2.27 (6H, m), 2.42–2.64
(2H, m), 3.74–3.89 (6H, m), 4.51–4.64 (1H, m), 4.64–4.85
(1H, m), 4.85–4.99 (1H, m). 13C NMR (CDCl3) d : 150.65
(s), 155.43 (s), 169.72 (s). HRMS m/z : Calcd for
C28H50N2O8P: 573.3305. Found: 573.3310.

Compound 9a: Colorless prisms (H2O), mp 225–226°C
(dec.). [a ]D

18 −11.7° (c=0.90, 2N HCl). MS (FAB) m/z :
181. IR (KBr): 3440, 3041, 1718, 1128, 1011, 989 cm−1.
1H NMR (2N DCl) d : 2.18–2.33 (1H, m), 2.41–2.66 (3H,
m), 4.08–4.20 (1H, m). 13C NMR (2N DCl) d : 19.48 (t),
27.47 (t), 55.26 (ddP, 1JCP=158.4 Hz), 175.95 (s). Anal.
calcd for C4H9N2O4P: C, 26.68; H, 5.04; N, 15.55.
Found: C, 26.62; H, 4.80; N, 15.43.
Compound 9b: Yield 68% from 8b. Colorless prisms
(H2O), mp 225–226°C (dec.). [a ]D

21 +12.4° (c=0.73, 2N
HCl). Anal. calcd for C4H9N2O4P: C, 26.68; H, 5.04; N,
15.55. Found: C, 26.61; H, 4.80; N, 15.43.
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